
INSTALLATION GUIDE

for

UO-LISP Version 1.5b

on

ZBO Based CPU, TRS-80 Model's I and III
with TRSDOS or TRSDOS like Operating Systems

Distributed by
Northwest Computer Algorithms

P. o. Box 90995
Long Beach, CA 90809

(213) 426-1893

QUICK CHECK INSTALLATION PROCEDURE

If you are unable to read any of the files on these disks, please
return them to Northwest Computer Algorithms and we will gladly
supply you with new ones. If you have any problems with the
system, please let us know as soon as possible. Your comments
about the system will be greatly appreciated.

Installing UOLISP (It is assumed that you are familiar with the
operation of TRSDOS and the use of the COPY and BACKUP commands.)
Please note that the programming environment is called UO-LISP
while the actual name of the command file is LISP48/CMD.

1. Please make a backup copy of the diskettes as soon as
possible. The MASTER PASSWORD is UOLISP. The disks are shipped in
Model I format and if you are running a Model III you will want
to convert the disk to Model III format. Please consult your
manuals for the correct procedure to convert the formats.

2. We suggest that you start by creating a LISP system disk with
the following files on it:

LISP48/CMD, COMP, RLISP, DEMO/RED

This collection of routines will enable you to run the demos
mentioned below. As you become more experienced with the system
you will want to include more of the packages in your LISP
environment. Also if you can before you run the demos listed
below print out the DEMO/RED file to look at
during the demo of RLISP.

3. To verify that you have a working copy of the system, mount
the disk you created in step 2-above in one of the drives and
enter the following. Assume that the disk was mounted in drive A.

DOS READY

LISP48
UOLISP Vl.5B <date created>

*

The time between entering LISP48 and when the asterisk(*) prompt
appears should be less than 10 seconds. If some message other
than the* prompt appears, something is wrong. You should write
down any output that appears on your console and return this and
the disk to Northwest Computer Algorithms or call immediately.

Enter the following program. You can exit to the TRSDOS command
level by typing (QUIT) at the beginning of any input line.

(DE SUPERREVERSE (A)
(COND ((ATOM A) A)

(T (CONS (SUPERREVERSE (CDR A))
(SUPERREVERSE (CAR A))))))

Make sure you get the number of parentheses correct. OOLISP
should respond after you type a <RETURN> on the last like almost
immediately with:

SUPERREVERSE

and another prompt. If not, you are probably missing a
parentheses somewhere. If you have gotten this far, then type the
following:

(SUPERREVERSE '((A. B) . (C. D))·)

OOLISP will respond very quickly with:

((D . C) B . A)

Now run the demo program written in RLISP in file DEMO/RED. If
you did not create a print out of the file DEMO/RED use <shift-@>
to control the scrolling of the demo.

Enter:

(FLOAD "COMP")

UO-LISP will load the compiler and respond with:

NIL

Turn on the compilation flag by entering:

(SETQ ! *COMP T)

00-LISP will respond with:

T

Now load the RLISP language by entering:

(FLOAD "RLISP ")

00-LISP will respond with:

NIL

To start RLISP enter:

(BEGIN)

00-LISP will respond with:

RLISP. Vl.5, <dated created>

You are now in RLISP and the syntax will be different than LISP.
Now enter:

IN "DEMO/RED";

RLISP will respond by reading and executing the DEMO/RED demo
file. If you made it this far without typing errors the demo
should run to completion. If you did not create a print out of
the DEMO/RED file use <shift-@> to control the demo scrolling.

demo runs ...

Now to go back to LISP enter:

LISP;

UO-LISP will respond with:

"Entering Lisp"

Now to exit LISP enter:

(QUIT)

Control is now returned to the TRSDOS command control program.

4. UOLISP is in an operational state. Please spend time going
over the longer Installation Procedure that follows since it
contains valuable information not contained in the manual. Also
please spend time getting to.know the placement of information in
the Manual. There is a reasonable index. If you have any
questions or comments about the manual please feel free to
contact us at any time.

BUGS & FEATURES

When entering in a file name it is best to leave a space after
the name inside the quotes, example "foo ", otherwise you will
probably get disk error reports from TRSDOS. When entering
characters A to Z do not use the shift key. If you do use the
shift key some defined LISP functions may not be recognized by
the reader. If you create a function where a shifted character is
part of the name you may not remember having used the shift key
and UO-LISP will generate an undefined function error. There is a
miss spelling in the manual in the edit section. The function to
restore a file created by the editor is listed as "RSTR" in the
manual this should read "RESTRE".

Concerning the included NEWSLETTER, although most of the information
concerns the CP/M based systems from time to time there will be
TRSDOS news as well. Please be alert to the differences between
the news items.

,.___/

'-._.,J

IMPORTANT NOTES

NON-TRSDOS OPERATING SYSTEMS

So far the NON-TRSDOS systems that are TRSDOS like in nature,
available for the TRS-80 Model I & III HAVE SHOWN TO BE
COMPATIBLE WITH UO-LISP. If you are running a NON-TRSDOS
operating system and experience problems please call or write
immediately.

USE OF HIGH MEMORY FOR DEVICE DRIVERS

Those of you running the UO-LISP Programming Environment with
a version of TRSDOS or 9ther operating systems like LOOS and
DOS+3.5 which allow device drivers to be placed in high memory
PLEASE TAKE NOTE.

This version of the UO-LISP Programming Environment was designed
before high memory located device drivers were commonly utilized.
The UO-LISP compiler currently expects to have access to al 1 of
available high memory. THUS, if not monitored the compiler might
try to use the space occupied by some device driver. To prevent
this from happening there is a function not documented in the
manual which wi 11 indicate where the binary program space
allocator is pointing. Use this function to monitor your binary
space pointer and avoid letting the compiler allocate space used
by a device driver. Also note that "FLOADing" a file uses binary
program space too.

1'he function not documented is (BPS!$), it returns the next
available byte of binary program space available for allocation.
Allocation occurs low to high memory.

IMPORTANT NOTE
IMPORTANT NOTE
IMPORTANT NOTE
IMPORTANT NOTE

The tutorial guide included in this package was written for the
CP/M based UO-LISP V2. You will find that it refers to a manual
you did not receive. It will also refer to functions not included
in your system.

The CP/M based version of the tutorial guide is now included with
the TRSDOS based version of UO-LISP Vl. WHY INCLUDE IT? We have
found that a high percentage of those purchasing UO-LISP Vl have
little or no LISP ex?erience. You will find that about 90% of the
tutorial guide is useful in learning LISP. We hope to retrofit
the tutorial guide to TRSDOS some time in the future.

.,,.
B U G R E P O R T

System ---------------------------
Version Number/Date -------------------

Name

Address ---------------------

Zip --------
Phone and hours: ___)- __ _ ______ / _____________ _
Description Please provide a brief description of what you think the
problem is and what its symptoms are. Please provide a complete program
and data listing if possible so that we can duplicate the problem.

+--+
I NCA USE ONLY: RECVD:_/_/_ REPL:_/_/_ RESP: I

+--+

P.O. Box 90995 Long Beach, California 90809 (213)-426-1893

I. Overview

The UOLISP system requires a minimum of 32k to operate and
a single floppy disk. A two disk system is required to copy the
software- from the distribution disk to a disk with the operating
system. UOLISP is configured for operation with the TRE-80 DOS
2.3 system on either the Model I or the Model III.

This manual and the users manual are not intended as
introductions LISP programming. Users interested in learning
LISP programning are advised to consult one of the books listed
in the bibliography.

II. Installation of the System.

The floppy disk contains executable code for all the
packages .described in the UOLISP manual. The disk should be
copied to another using the operating system BACKUP utility.
The disk you have received contains none of the TRS-80 operating
system except a directory. The files can be copied to a disk
with the operating system COPY command. Alternatively the disk
can be used as a data disk in a second drive.

III. Starting up LISP

After mounting the floppy in the default disk ~rive you
execute the program LISP by just typing LISP32 or LISP48 for
either the 32k or 48k versions. The system should respond
with:

UOLISP. Vl.x. date
*

within a few seconds. If not, the disk was not properly copied.

The Vl.x is the version of the system you are running. All
correspondence should mention this number. The prompt character
is always an asterisk.

IV. TRS-80 File Names

In the users guide file names are given in a system
in~ependent form. In practice these file names must conform to
the TRS-80 file name conventions [2].

File names within UOLISP are always strings in double
cuotation marks. Important: the last character of the file name
ihould always be a blank.

Some conventions for file name extensions are:

/LSP - A LISP syntax source file.

/RED - An RLISP syntax source file.

no extension - Fast load files.

The following are file name equivalents for the files given
in the users guide.

Guide
"COMP"
"RLISP"
"EDIT"
"TRACE"
"META"
"LAPP"
"OPT"
"VECTORS"
"PRETTY"

TRS-8C
"COMP II

"RLISP II

"EDIT"
"TRACE II

"I-~ETA II
"LAPP II

"OPT "
"VECTORS II

"PRETTY II

V. Diskette Contents

The following files are
diskette:

Compiler.
RLISP parser.
Structure Editor.
Trace package.
Little META TWS.
LAP pretty printer.
Optimizer for compiler.
Vector package for RLISP.
Pretty printer.

present on the distribution

1. LISP32/Ct1D A 32k version of UOLISP. Does not permit
operation of all the packages. Does not have as many free
cells or as large a symbol table. Not distributed with
Vl.S.

2. LISP48/Q.1.Q - The full sized 48k version.

3 . .Q)lll: - A fast load version of the compiler.

4. RLISP - A fast load version of the RLISP parser.

5. ~ - A fast load version of the structure editor.

6.. TRACE - A fast load version of t.he trace package.

7. D.fil1Q/.E.E,D - A demonstration program in RLISP.

8. LAE.f - A pretty printer for the LAP assembler. Formats
output and dumps code and addresses in hexadecimal.

9. Q.£1'. - A peephole optimizer for the compiler and assembler.
Can be loaded with the conpiler to produce smaller and
faster code.

10. VECTORS - A vector package for use with RLISP. Implements
arrays of any type.

'-._,,/

~

11. PF.ETTY - A pretty printer. It is interfaced to nLISP and
the EDITOR or may be loaded alone.

VI. Storage Requirements

The following are the approximate free spaces·available in
the 32k and ~8k systems:

Contents

String Space (characters)
Free cells (pairs)
Syrabol table (entries)
Code pointers (entries)
Stack space (entries)
Binary Program Space (bytes)

.12.k

lSCO
1325

320
128

4CC0
5158

The following fast load files may be loaded
binary program space. They take up the
space:

RLISP
Compiler
Trace package
Editor
LAP pretty printer
Optimizer
Vector package
PRETTY printer

5143
4737

814
1798

567
2695

965
1244

A.ak

3072
2560

512
172

4096
13359

at any address in
following amount of

Lisp Interpreter code size: approximately 7000.

These sizes do not include dotted-pairs and symbol table
space required for their execution. The base LISP interpeter

including all data but less any free area requires about 13k
bytes.

VII. Control Keys

All input and output from the TRS-80 keyboard is- in capital
letters. A few keys have special functions. The CLEAR key will
interrupt any running program and cause an ERROR(0,NIL). During
all output operations, any key which is typed (other than CLEAR)
will cause temporary suspension of the program untii another
key is typed at which time execution will continue. Note that
CLEAR is only effective during output operaions.

"

The standard editing controls of the TRS-80 for backspace
and line clear are ir.iplemented. The BREAK, key: has::.no:,:·erfee't.

VIII. TRS-80 Graphics

Three new functions have bee~ added to permit low resolution
graphics on the TRS-80 screen. Special thunks go to Bruce
Douglass for these functions.

(RESETB X:integer X:integer) :lll.L
Type: EVAL, SPREAD.
Turns off the pixel at location (X
X should be in the range 0 to 127
0 - 47 inclusive. Other values may

(st.I.a X:integer X:integerl :fil.L
Type: EVAL, SPREAD.

Y) on the TRS-80 screen.
inclusive and Y the range

destroy the system.

Turns on the pixel at location (X Y) on the TRS-80 screen.
The X and Y values should be constrained as in RESETB.

(TESTB X:integer Y:integer) :boolean
Type: EVAL, SPREAD.
If the pixel at location (X Y) is
otherwise NIL is returned. The X and Y
constrained as in RESETB.

on, Tis returned,
values should be

The TRS-80 screen is referenced by the following X and Y
coordinates:

1---\
I (0 0) ------> (127 0) I
I X I
I r
I !y I I
I (X Y) I I
I I I
I I I I
I V V I
I I
I I
\ (0 47) ------> (127 47) I

IX~ Progr;am ,oescription•s~

A.~ Inter~reter.

The LISP interpreter is the main program of the entire
system. It functions much like a BASIC interpreter, reading
function definitions, evaluating functions, handling errors and
so on. The features provided by this program include:

1. A garbage collector Most LISP data structures are
constructed from dotted-pairs wbich are kept in a free
list. When all these are used up by a program, the garbage
collector locates all thos~ not in use and returns them to
the free list. Garbage collection in the 48k system
generally takes about two seconds.

2. 12i..s.k. l./Q - UOLISP supports input from an auxiliary disk
file whose name is supplied by the user. It also supports
(even at the same time) output to a disk file whose name is
supplied by the user. The current version of UOLISP does
not support output to the line printer.

3. Functions - UOLISP supports both EXPR and FEXPR type
functons. The EXPR type function is the usual form of
funct1on which has all its arguments evaluated before it is
called. The FEXPR type function does not evaluate its
arguments unless programmed to do so. In this manner, the
user can experiment with control constructs other than
those provided by the base system.

4. Hashed Symbol Table - The run time symbol table of UOLISP
exists in 32 buckets each associated with a particular set
of symbols determined by a hash function. This assures very
fast input of LISP files from disk.

5. Arithmetic UOLISP uses 13 bit signed arithmetic
permitting numbers between -4096 and +4095.

6. strings Arbitrary strings of characters for error

messages and the like are implemented.

7. Function ,S,tl ·- Nearly all Standard LISP functions are
implemented. The only exceptions are those dealing with
floating point numbers, vectors, COMPRESS and EXPLODE, and
some of the I/0 functions. In all, 102 of Standard LISP's
123 functions are implemented. There are 20 additional
functions not in Standard LISP also available to the user.

8. t,:AP functions - All 6 rlAP functions are suppo;rted.

9. -~ Loader - A loader of relocatable "fast load" files is
part of the resident system.

10. TRS-80 graphics - Three functions turh on, tuyn off, and
test individual pixels on the 128 by 4B. TRS-80 low
resolution graphics screen.

It is expected that most functions will be compiled even
during the debugging phase of a program. User implemented
programs can be compiled as a block into a relocatable form
called "fast load". Storing files in this form saves space and
time. As many fast load files as will fit into available space
can be loaded in any order. All support programs of the system
are saved in this way, including the compiler, RLISP, the trace
package and the editor. •

This form of file loads considerably faster than reading the
source and compiling it. Likewise, programs which are too big to
fit into storage may be compiled into the fast load format and
then loaded into storage where the compiler would normally be
stored.

~- The~ compiler.

The LISP compiler converts LISP functions into code directly
executable by the Z-80 microprocessor inside the TRS-80. The
compiler can either generate a fast load file, or dump the
instructions directly into main storage for execution. Compiled
code uses about 1/2 the space of interpreted code and runs up to
5 or more times faster. It generally requires less space to
run.

Compiled and interpreted code can be mixed. Some functions
of a program can be interpreted and others compiled without
consideration by the user. A special "fast link" permits
function calls to be placed directly inline, a "slow link"
scheme permits functions to be redefined, and traced even if
they are compiled. The operation of the compiler is given in
great detail in the users guide.

-.._I

Q. Tile. L.M pretty printer.

This module formats the output of the LAP assembler for easy
examination. Addresses and instructions are printed in their
hexadecimal forms rather than decimal. The LAP instructions and
labels are printed in a fixed format without parentheses.

~-I.he.Optimizer.

This mooule takes the LAP code created by the compiler and
performs 13 different optimizations on it. This include:
removing redundant load register instructions, dead code,
converting long to short jumps, using some special Z80
instructions, and removing extra stack frame allocations. The
optimizer can also be enabled to open code some functions
producing even faster code, sometimes as much as 30 % (with some
increase in code size). A final class of optimizations removes
some of the run time type checking and produces. even faster
code.

£. s-exvression Pretty Printer.

This package formats LISPS-expressions by indenting them in
a reasonable form. The expressions will not run over the screen
boundaries as set by LINELETTGTH. The pretty printer is
interfaced to RLISP and the structure editor. It can be loaded
directly into LISP and used by explicitly calling the
PRETTYPRH!T function.

~- The L.I..S.£ structure Editor.

A very simple LISP program permits the user to enter
functions, execute them, and then save them in a disk file. The
functions can be modified and listed. The disk file can be
listed using regular system utilities, read by BASIC programs,
and even edited by some of the more advanced editors (not
EDTASM}. The editor can be used in conjunction with PRETTYPRINT
for more legible files.

n. The RLISP 1iis.h Level Language.

The RLISP programming language was implemented by A. C.
Hearn- in 1973 to facilitate the implementation of a symbolic
algebra system, REDUCE [3-4]. A reasonably complete subset of
the syntax has been implemented for UOLISP. For example, in LISP
a recursive factorial routine might be programmed like this:

(DE FACT (N)
(COND ((LESSP N 2) 1)

(T (TIMES N (FACT (DIFFERENCE N 1))))))

The same procedure written in RLISP looks more pleasing to the

experienced user of
languages:

modern block structured programming

EXPR PROCEDURE FACT ?J;
IF N < 2 THEN 1

ELSEN* FACT(N - 1);

The RLISP parser· is cleanly interfaced with the system and can
be loaded from disk when reauired. The parser takes a little
more than 4k bytes of storage. In the 48k system it may be
loaded \lith the LISP co~piler with about Sk bytes left over for
compiled programs. The 32k system will not support both RLISP
and the compiler together.

r . .The. Trace Package.

This set of functions permits users to watch the ~~aluation
of both interpreted and compiled functions. The arguments of a
function are printed out before the routine is entered, and ~~~
value of the function is displayed before it is exited. A DREAK
function per~its the user to stop a function and examine its
local and global state.

J. The. vector Package.

This collection of routines implements the Standard LISP
vector functions. Vectors (arrays) can be created at any time
and can be of arbitrary size~ The elenents of a vector can be
of any type and can even be of mixed types. Consequently a 2
dinensional array is implemented as a vector of vectors.
Vectors can even be input to a program. For example:

@O, 1, @O, 1#, 3, "HELLO"#

creates a 5 element vector with the values 0, 1, @r, 1#, 3, and
"HELLO" in its 5 locations.

X. Running the Demonstration Program.

The demonstration program can be
interpreted mode, or can be compiled and run
be converted to a fast load file) on 48k
following:

LISP48 <enter>
(FLOAD "RLISP ") (BEGIN) <enter>
ON COMP; <enter>
IN "DE1'.O/RED "; <enter>

run in either an
(it cannot easily

machines. Enter the

The demonstration program will being to run. To freeze the
output on the screen, type any character (other than CLEAR}. To
resume output, type any other key. Use of the compiler is

recom~ended because of of the length of the demonstration.

li§.t. .Q..f. References

1. J. Marti, A. c. Hearn, M. L. Griss, c. Griss, nstandard
LISP Report", SIGPLAN Notices, Vol. 14, No. 10, October
1979, pp. 48-68.

2. "TRSDOS & DISK BASIC Reference Manual", Radio Shack, Fort
Worth 7 Texas, 1979.

3. A. c. Hearn, "REDUCE
Computational Physics,
1974.

2 Symbolic ~ode Primer", Utah
Operating Note No. 5.1, October

4. A. C. Hearn, "REDUCE 2 User's Manual", Utah Computational
Physics, UCP-19, ~arch 1973.

!3ibliograJ.?bY

1. Winston,
Publishing

P. t·l., Horn, B. K. P., "LISP", J\ddison-i·~esley
Company, Reading, Massachusetts, 1981.

2. Allen, J.,
1978.

"Anatomy of LISP", McGraw-Hill, New York,

3. I!cCarthy, J., Abrahams; P. v~., Edwards, D. J., Hart, T.
P., Levin, M. I., "LISP 1.5 Programmer's Manual", The TTIT
Press, Cambridge, Massachusetts, 1962.

4. Siklossy, L., "Let's Talk LISP", Prentice-Hall, Englewood
Cliffs, New Jersey, 1976.

5. Weissman, C., "LISP 1.5 Primer", Dickenson Publishing
Company, Belmont, California, 1967.

	Quick Check Installation Procedure
	Important Notes
	Bug Report
	I. Overview
	II. Installation of the System
	III. Starting Up LISP
	IV. TRS-80 File Names
	V. Diskette Contents
	VI. Storage Requirements
	VII. Control Keys
	VIII. TRS-80 Graphics
	IX. Program Descriptions
	List of References
	Bibliography

